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E M B E D D I N G  OF IN 
FINITE DIMENSIONAL B A N A C H  SPACES 

BY 

N. ALON' AND V. D. MILMAN 

ABSTRACT 

Let xi, x2,'" ",x. be n unit vectors in a normed space X and define M, = 
mve(llX,"=, ~,x, I1:~, = • 1}. We prove that there exists a set A C {1,.-., n} of 
cardinality IA I=>[X/n/(27M.)] such that {X,},EA is 16M.-isomorphic to the 
natural basis of l~. This result implies a significant improvement of the known 
results concerning embedding of l~ in finite dimensional Banach spaces. We 
also prove that for every e > 0 there exists a constant C(e) such that every 
normed space X. of dimension n either contains a (1 + e)-isomorphic copy of l;" 
for some rn satisfying In In m => �89 In In n or contains a (1 + e)-isomorphic copy of 
l~ for some k satisfying lnln k > �89 n-  C(e). These results follow from 
some combinatorial properties of vectors with • 1 entries. 

1. Introduction 

L e t  X be  a n o r m e d  space  and  let  A = {xl , -  �9 ", x ,}  be  a set  of  n un i t  vec to r s  in 

X. D e f i n e :  

M , ( = M , , ( A ) ) = A v e {  ,=1~ /~,X, : ~ , = - + 1 } .  

F o r  p o s i t i v e  rea l  n u m b e r s  C and  e, le t  k = k(e ,C,n)  be  the  m a x i m a l  

n o n n e g a t i v e  i n t e g e r  such  tha t  if M ,  < C (for  s o m e  set  A of  n un i t  vec to r s ) ,  t h e n  

X c o n t a i n s  a (1 + e ) - i s o m o r p h i c  c o p y  of  l~. It  is we l l  k n o w n  (see [15] and  m o r e  

g e n e r a l l y  [16]) tha t  k(e, C, n)----~oo as n---~ oo and ,  in fact ,  t he  s a m e  resu l t  ho ld s  

e v e n  if C g rows  s l o w e r  t h a n  any  p o w e r  of  n. H o w e v e r ,  in m o d e r n  B a n a c h  space  

t h e o r y  we  a re  i n t e r e s t e d  in e s t i m a t i n g  the  b e h a v i o u r  of  k(e, C, n) as n g rows .  

T h e  o r ig ina l  p r o o f  impl i e s :  k(e,C,n)>= Cl(e,C)loglogn. In  this  p a p e r  w e  

* The contribution of the first author to this paper forms part of his Ph.D. Thesis written under the 
supervision of Prof. M. A. Perles from the Hebrew University. 
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improve this bound significantly by proving that k(e, C, n)>- Cln C2'"O+~)/lnc, 
where C~ and C2 are absolute constants. (See Theorem 4.2.) 

Another result we prove here is the following: 

THEOREM 4.3. For every e > 0 there exists a constant C ( e ) such that for every 

normed space X,  of dimension n either Xn contains a (1 + e)- isomorphic copy of 17 

for some m satisfying In In m => �89 In In n or X,  contains a (1 + e)-isomorphic copy 

of l~ for some k satisfying lnln k >_-�89 n - C(e). 

This result is best possible. (See the remark following Theorem 4.3.) 

Theorem 4.2 deals with a special case of the following general problem: What 

standard subspaces (i.e. 1~ for some p _-> 1 and some integer k) or subspaces with 

some symmetry are embedded in span(A ) provided M, (A) has a given growth? 

The case M, >= Cn lip for some absolute constant C and l_-<p < 2  was 

investigated in [2], [12] and [18] and we have a lot of information about 

embedding of l, k (1_-<r<2) or, more generally, of subspaces with (1+ e)- 

unconditional or (1 + e)-symmetric basis in span{x,},"=1. 

The situation is completely different in the case M, <= Cn tjq for q > 2. Almost 

no quantitative information is known in this case. In this paper we deal with the 

extremal situation of this case arising when M, grows slower than any power of 

n. 

Our results follow from some combinatorial results concerning vectors with 

- 1 entries. These results, which are interesting for their own sake, are described 

in the next section, In Section 3 we obtain some geometric applications of the 

combinatorial results, and in Section 4 we prove our main results. 

2. The combinator ia l  tools 

We start with some notations and definitions. Put N = {1, 2,. �9 n}. For a set  

A define B ( A )  = {f I f  : A --> { - 1,1}}, and put ~ = ~ ( n )  = B(N) .  In this sec- 

tion we study extremal properties of subsets of ~. 

For bt C ~ and I C N define 

P ~ ( ~ ) = { g E B ( I ) : : I f E b ~  such that g = f [~} and 

P D ' ( ~ ) = { g  E B ( I ) : 3 f l ,  f2Eg~, f~l, = f 2 J t  = g  and (fl+f2)lN_,~0}. 

i s / -dense  if IPr(~)[  = 2 l~l. In other words ~ i s / -dense  if every function in 

B (I) is the restriction to I of a function in ~.  Similarly ~ is I-doubly-dense if 

iPD'( )L = 2 
For 1 =< m < n, let h(m, n) denote the maximal cardinality of a set ~ C ~ such 
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that for any I C N, I I1 = m, ~ is not / -doubly-dense .  Our first task in this section 

is to estimate h (m, n) (Lemmas 2.2, 2.3(i)). In fact, the following exact value of 

h(m, n) can be proved. 

THEOREM 2.1. 

h(m,n) =f 

Extremal examples 

= { f E , ~ : l { i  

and 

i f m + n i s o d d ,  
| = 0  

(m + n)/2} 
if m + n  is even. 

showing that h(m, n) is at least the stated number are 

EN:f(i)=-l}l=<(m+n-1)/2} if m + n  is odd 

= {f E F :  ]{i ~ N : f ( i )  = - 1}1-< (m + n - 2)/2} 

t 0 { f ~  ~ :1{ i  E N:f(i) = - 1}[ = (m + n)/2 and / (1 )  = 1}if m + n is even. 

Since we need here only the asymptotic behaviour of h(m, n) for large n and 

m and since the exact determination of h(m, n) when m + n is even is somewhat 

more complicated than the odd case, we prefer to obtain here, in part (i) of 

Lemma 2.3, only an upper bound to h(m, n). This upper bound determines 

h(m, n) exactly when m + n is odd. The exact upper bound for the even case can 

be proved by combining Lemma 2.2 proven below with the theorem of Hall and 

K6nig [4] and the theorem of Erd6s, Ko and Rado [7]. 

A result similar to Theorem 2.1 determining the maximum cardinality of a set 

C ~" that is not/-dense for every I C N, [I I = m is known (see [19], [20] and 

[13]), and is used in Banach space theory in [17]. It seems that the difficulty 

arising in the solutions of these combinatorial problems is due to the fact that 

these problems have many extremal sets ~ that do not share a common 

structure. We use here the same method used in [1] to overcome this difficulty. 

DEFINITION. A set ~ C ,~ is called monotone if f E ~ and g _--> f imply 
g E ~ .  

A crucial part of the proof of these two results is the reduction of the 

problems to the case where ~ is monotone.  Once this is clone there is only one 

extremal set ~ (up to certain obvious isomorphisms). 

For  iEICN and g : I - - -~{ -1 ,1}  define T , (g ) : I - - -~{-1 ,1}  and 

(g) : I ~ { - 1, 1} as follows: 
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and 

(T, (g))(k)={g(~)  
if k~i, 

if k=i, 

(T,(g))(k)=(g(kl)  i f k # i ,  

- if k =i .  

LEMMA 2.2. For every ~ C J; there exists a monotone ~ C ~ such that 

(a) I ~ 1 = [ ~ 1 ,  
and 

(b) for all I C N if ~ is not I-doubly-dense then ~ is not I-doubly-dense. 

Among all sets ~ C ~ that satisfy (a) and (b) let Go be one for which 

is maximal. To complete the proof we show that Go is monotone. 

For l_-<i_-<n and f E Go define 

r ,  f f )  = - 

if 

[~ f otherwise. 

Note that if Go is not monotone then T, (Go) ~ Go for some 1 =< i =< n, and that if 

f E T, (Go) and f ( i )= - 1  then both f and T, (f) belong to Go. 

We now show that T, (Bo) satisfies (a) and (b). 

(a) It is easily checked that if f, g E G0, then f ~  g implies T, (f) ~ T~ (g) and 

thus I T , ( ~ o ) [ = l ~ o [ = [ ~  I. 
(b) Let I C N and suppose that ~ is not / -doubly-dense .  We must show that 

T, (Go) is not / -doubly-dense .  Go is not / -doubly-dense  (since it satisfies (b)), and 

thus there exists a function g : I---> { -  1, 1} such that g~ PD~(~o). We consider 

three possible cases. 

Case 1. i ~ I 
We claim that in this case g~PDX(T,(~o)) .  Suppose this is false and 

g EPD'(T,(~o)). Then there are f , , f2~ T~(~o) such that f l i t  =/2[ ,  = g  and 

(fl + f2)[s-r =- 0. Since i~ I fl(i) ~ f:(i) and we may assume that fl(i) = - 1 and 
[2(i) = 1. Since fl E T, (Go) and fl(i) -- - 1 we conclude that both fl and T, (/1) 

belong to ~o. However,  f2 E T~ (Go) and thus either fz or T, (re) belong to Go. 

PROOF. 

the sum 
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Therefore either {fl, f2} C ~o or {T,, (f,), _T, (f2)} C ~o. In both cases g ~ PD'(Go) 
contradicting our assumption. 

Case 2. i E I a n d  g ( i )=  - i 
In this case g ~  PD~(T, (Go)) since if f E T, (Go) and f [i = g then f ( i )  = - 1 

and f E Go. Thus the existence of ft, f2 E T, (Go) that satisfy ft Ix = f2 I, = g  and 
(f, + f2) IN-I=-- 0 would imply that fl, f2 E Bo contradicting the assumption that 
g Z pD I ( Go). 

Case 3. i E I  and g( i )=  l 

We claim that in this case T_,(g)E PD'(T,(Go)). Suppose th]s is false and 

T_, (g) E PDI(T,  (Go)). Then there exist fl, f2 E T, (Go) that satisfy fl II = f2 II = 

_T,(g) and (f ,+f2)lN i-=0. Since f , , f2ET, (Go)  and f~ ( i )=f : ( i )=  _T,(g)(i)= 
- 1  it follows that ~(f~), T,(f2)@Go. But this implies that g EPD'(Go) ,  a 

contradiction. 
This completes the proof of Case 3 and shows that T, (Go) satisfies (b). 

If T, (Go)~ Go then the sum M(Go) defined in (1) is strictly smaller than 
M(T,(Go)), contradicting the choice of Go. Therefore T,(Go)= Go for all 
1 =< i -< n and thus Go is monotone. This completes the proof. [] 

LEMMA 2.3. Suppose ~ C o% ( n ). For 1 <= m < n put 

Y ( m )  = {I C N;  III = m and YI is I-doubly-dense}. 

Then : 

(i) I f  

[(,,~)/2] 
(7) 

then Y ( m  ) ~ 0 (i.e. h(m, n) < v[~-+,-)/2Ii-~'~ ~ =o ~z ) ) .  

(ii) I f  

(3) 1 ~ 1 =  > 

then 

PROOF. By Lemma 2.2 we may assume that ~ is monotone. Define 

T =  T ( m ) = { ( I , f ) : I C N ,  II]=rn,  f E ~  a n d / [ , - =  -1}.  
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For J C N, I JI = m let 

For g E ~ put 

and 

Note that I T,[ = (z~)). 

N. ALON AND V. D. MILMAN Isr. J. Math. 

Tj = {(I, f)  E T : I = J}. 

z(g) = [{i ~ N :  g(i) = - 1}1 

Ts = {(I, f )  ~ T : f = g } .  

T >1 2---, Note also that if [ j ~. for some J then the 

function - 1 : J ~ { - 1, 1} belongs to PD ~ (~).  This fact and the monotonicity of 

imply that J E Y. 

(i) If (2) holds, then 

(4) 
(r -m) 

- _ 1 . 2 . _ . , "  = ( m ) t < " ~ o ' m ( n  J m ) > ( n ) . ~ =  

But ] T] is also the sum of the (~,)[ Tj ]'s, where J C N and I JI = m. Tfierefore 

IT, l> �89 2 "-m for at least one such J and thus Y ( m ) r  0 as needed. 

(ii) If (3) holds then the same estimate as that given in (4) implies 

n ) 3 2,_W-~.I. 
I T ( [ V ~ n l )  [ --> " - "  

[V~n] 4 

However 

IT[= E {ITj I :J  C N, J=[Vnn]}, 

and since 0< tT~t_-  < 2  "-W"l for each such J the last inequality implies that 
T~ > t  2.-W.I I . ~' for at least ~(w-J) different J's. This shows that ~ is J-doubly- 

dense for at least �89 J 's  and completes the proof. [] 

The first part of Lemma 2.3 supplies an estimate of h(m, n) that is used in the 

next section to prove the first part of Theorem 3.1. For the proof of the second 

(stronger) part we need some more combinatorial results. 
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and 

(b) for 
such that 

Before stating our next lemma we need two definitions. If I C N and 2 =< i E N 

define S, (I) C N as follows: 

&(I)  = { I -  i + (i if i -  l ff. I and i C 

A family ~ of subsets of N is called a left bali if I E ~ implies & (I) E ~ for each 

2 =< i =< n. The proof of the next lemma is similar to that of Lemma 2.2] 

LEMMA 2.4. Let cg be a family of m-subsets (i.e. subsets of cardinality m) of 

N. Then there exists a left ball ~ of m-subsets of N such that 

(a) I 1=1 1, 

every 1 <= k <= t cgl and every I~, . . . ,  Ik E ~ there exist J~,. �9 Jk E cg 

i+,1 1+i 
s = l  s = l  

PROOF. Among all families of m-subsets sg of N that satisfy (a) and (b) let Sgo 

be one for which the sum 

(5) L ( ~ / ) =  ~ ~ i  
I E a g  I E l  

is minimal. To complete the proof we show that Sr is a left ball. 

For2=<i=<n  and I E d o d e f i n e  

f & (I) if S, (I) ~ do, 
S, (/) [ I otherwise. 

Note that if do  is not a left ball then S, (do) ~ do for some 2 < i =< n. 

We now show that S, (Sr satisfies (a) and (b). 

(a) It is easily checked that if /, J E sr then I ~  J implies S, (I) ~ S, (J) and 

thus I S, (Mo)[ = Idol = ] ~l-  
(b) Suppose 1-< k _-<[~3 t and let S, (I1), ' '  ", Si (Ik) be k elements of S, (do), 

where I1," �9 ", I~ E Silo. We shall prove that there exist Jl," �9 ", Jk E do such that 

(6) J~ --> U s,(I,)  . 
= $ = 1  

t Note added in proof. We have recently been informed that P. Frankl had also used this lemma in 
[21]. 
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This and the fact that Sgo satisfies (b) will clearly imply that S, (Sgo) satisfies (b). If 

i - 1 ff~ U~=l S, (L) or if i ~  U~_l S, (L) one can easily check that we can choose 

J l = L , ' " , J k = I k  in (6). The same holds also if i - l ,  iEU~=~S,(L)  and 

i - l u U ~ = ~ L .  Thus we may assume that i - l ,  i ~ U ~ I S , ( L )  and 

i - 1 t~ U~=~ L. In this case there exists t, 1 =< t < k, such that i E L, i - 1 ff L and 

(L)~sgo and there exists r / t ,  l<=r=<k such that i E L ,  i - l f f L  and 

S, (L)ff~ ~o. However, we can choose here 

{J,,--., = {L,. .- ,  + g,(L) 

and this set of J 's  will satisfy (6). This shows that S, (S/o) satisfies (b). 

If S,(s/o)r S/o then the sum L(s/o) defined in (5) is strictly larger than 

L(S,(sgo)), contradicting the choice of Sgo. Therefore S,(sgo)=sgo for all 

2 _-< i ___< n and thus sgo is a left ball. This completes the proof. [] 

In the proof of the next lemma we use the following inequality of Chernoff 

(see [6]). 

CHERNOFF'S INEQUALITY. 

satisfy k < p �9 m then 

LEMMA 2.5. 

satisfies 

If 0 <  p < 1, q = 1 - p  and k, m are integers that 

p,qm-,<_ 

Suppose n >- 1000 and let Y be a family of [X/n]-subsets of N that 

I Y I = ~  [ ~ n l  " 

Then there exist k <-_ 6~/n + 1 elements I,,.  �9 Ik of Y that satisfy 

k 

PROOF. By Lemma 2.4 we may assume that Y is a left ball. In order to 
complete the proof we show that there exists an I E Y such that 
( n -  [6r XFn] + 1 )~  I for all 1 _-< r < XTn[6. Since Y is a left ball this fact will 

imply the existence of k _-< 6 X/n + 1 elements I,,. �9 Ik of Y that satisfy 

k 

{1 ,2 , . . . , n - [6XTn]+1}c  U Is 
S=I  

and thus clearly satisfy (7). 
Since Y is a left ball, in order to prove the existence of the desired I E Y it is 

enough to show that there exists a J ~ Y such that 
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(8) IJ n [n - [6r kTn] + 1, n]l > r 

for all 1 _-< r < X/n/6. Assume this is false. Then,  for every J E Y there is some r, 
1 =< r < NTn/6 such that 

IJ n [n - [6r kTn] + 1,n]l < r. 

This clearly implies 

(9) iyl<_ ~ ~ ([6r~fn]).(n-[6r~Fn] 
,<= . . . .  / ~ , : o  i [N/-nn]- i /" 

Since n => 1000 one can easily check that 

�9 [6r~nn] (n-[6rV/~n]~ 

,=~o( i ) \  [V~nn]-i /=< 
' 1 

e-  ~ i r ([X~nn] - i)! (6r- X/-nn)'- (n - 6r X/~n) ' ~ > '  

nt~q([x/-hn])! 

(10) 

=e s { [NTn]'~[ 6r ~ ' ( - ~ n n )  ,=0 \ i }\X/-nn} 1 6r IV;l-, 

By Chernoff 's inequality the right side of (10) is at most 

. ( [XFnn] -6 r+ l )bT" l - r (6 r ) '<  C ( 1 6 ' 
e \ [~T n] - r  , r ,  e ' e ~  

Combining (9) and (10) we obtain 

ivl_< n "e E [xT~] l__<,<v.,6 2 bTn] 
which contradicts the theorem's hypothesis. This completes the proof. [] 

3. Geometric applications 

In this section we prove the following theorem. 

THEOREM 3.1. Let xl, x:,.. . ,x, be n unit vectors 
suppose 

in a normed space and 
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Then : 
(i) There exists an I C {1, . . . ,n} ,  IIl--[~/~] such that 

(11) 

for all e, ~ { - 1, 1} (i E I). 
(ii) There exists a decomposition of N = { 1 , 2 , - . . , n }  to k <=7~/-n pairwise 

disjoint subsets I~,.. ", Ik such that for all 1 <= j <= k and e~,." ", e, E { - 1, 1}: 

REMARK. Both parts of Theorem 3.1 are best possible for all 1 < M .  < 

X/n. X/2/~-up to the constants 8 and 50. This is shown in the following example. 

Suppose X/n _-> C > 0 and let X be the n-dimensional (real) linear space with the 

norm 

{ E ,I } 
I}(Y,,'",Y-)}I = m a x  C"  '=~ , max tY, �9 

1 ~ 1 ~  n 

Let {e,},"=l be the standard basis of X. It is easily checked that the e,'s are unit 

vectors in X and that 

However,  if I C {1,." ", n}, II[ _-> d .  Vnn then clearly 

PROOF. (i) It is easily checked that M. _-> 1 and thus the assertion we have to 

prove is trivial for n < 80. Thus we may assume n ->_ 80. Define ~ C ~ ( n )  as 

follows: 

~ = { f E , ~ ( n ) :  ,=l~f(i)'x' =<8 .M,} .  

Clearly [ ~  I => 7" 2" and since n >= 80 this implies 

I le ,=o �9 
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Therefore, by part (i) of Lemma 2.3 there exists an I C N, t lI  = [Vnn] such that R 
is I-doubly-dense. In order to complete the proof we shall show that for every 

g : I---~{- 1, 1} 

(12) I1 2,~, g(i)'x,[l<=8" M.. 
For each such g there are f,,f2~Y~ that satisfy f~[1=fzt,=g and 

(f, +fz)lu-~---0. This means that 

1 ~ f,(i)x, + 1 g(i)" x, = ~ ff f2(i) �9 x,. 
1=1 I=1  I = 1  

This, the definition of ~ and the triangle inequality imply (12) and complete the 

proof of part (i). 
(ii) Since M, = 1 every I C N, [ I I = 50 satisfies the desired inequality 

I~e,x, tl<=5OM, for all e, E { -  I, t}, 

and thus the assertion of part (ii) is trivial for n < (350) 2. Assuming n => (350) 2 

define 

Since n ___ > (350) 2 

Put 

i~ [_>f f  d49. 2"---->l"/2+v;q(7),=o~ " 

Y = {I C N :III  = [xFn] and ~ is/-doubly-dense}. 

By part (ii) of Lemma 2.3 

> ' ( n )  I YI " 

By Lemma 2.5 there exist k _-< 6X/n+ l elements J,,-.-,Jk of Y that satisfy 

k 

Combining double-density with the triangle inequality just as in the proof of part 

(i) of the theorem we conclude that for every 1 _-< i _-< k, I C Z and ej E { - 1,1} 

0 I) 
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~ e~x, - 5 0 "  M,. 

Clearly we can choose k pairwise disjoint sets I~ , . . . , Ik  where L c J, for 

1 =< s =< k and I..J ~=~ J~ = I..,I ~=, I,. The remaining indices lie in I = N - I...I ~=~ L 

and their number is at most 6 ~ n .  We can split I into r < ~ n n - 1  pairwise 

disjoint subsets Ik+,," �9 ", I~+,, each containing less than 50 indices. I,, I2," �9 ", L . ,  

is the desired decomposition of N. [~ 

4. The main results 

We are now ready to prove our main results. Recall that X is a normed space, 

x , , . . . , x .  ~ X are unit vectors and M. = Ave{lie,"=, e,x, [1: e, = -+ 1}. 

THEOREM 4.1. (i) There exists a set A C {1,2 , . . . ,  n} of cardinality k = IA I>= 

[~Tn/(2~M,)] such that {X,},~A is 16M.-isomorphic to the natural basis of lk=. 

(ii) There exists a decomposition of {1,2, . . - ,  n} to k <= 63. (100M,)2~nn pair- 

wise disjoint ~ubsets A , ,  A 2 , "  ", Ak such that {x~},~A, is l OOM,-isomorphic to l~ A't 

for all i = 1,2, '"  ",k. 
(iii) There exists a set A C{1,2,--- ,  n} of cardinatity t A 1 >- _ (N~n/(27M,)] such 

that ]]:L~Aoc,x,/}---->~max,~A la, I f  or all u, ~ R. (This shows that {x,},~A has a 

biorthogonal system of functionals {x *} ,~  C X* such that IIx, II <- 2.) In particu- 

lar, if M,  <- C" n TM for some q > 2  then [ m l ~  [n ''= '~q/(2 ~" C)]. 

PROOF. (i) By part (i) of Theorem 3.1 there exists a set I C { 1 , 2 , . . . , n } ,  

I = [XFn] that satisfies (11). For i E I let x* ~ X* satisfy I[x* II = i and x*(x,) = 1. 

Clearly (11) implies that 

(13) Ix*(x,)l-<_ 8A4. 
I E l  

[or all i E I. By [11, lemma 2] if (o~o) is a nonnegative m by m matrix.that 

satisfies Z;=~ ~o <= M for all 1 =< i =< m then lor every e > 0 there exists a set 

J C {1, . . . ,  m }, [1 [ => m �9 e/(8M) such that Zj~J\~,~ a,~ <= e for all i E J. Combining 

this lemma with (13) we obtain that for every e > 0 there exists A~ C I such that 

E,~A.~,~[X~(X~)[ < e for all i E A~ and ]A~ [~  [ ~ n ] .  e/(26M,). By (11) for every 

a, E R  (i E A , )  

I 
a,x, I -< max [ a. f. 8M.. 

I f  = max,  , 4 th n 
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To complete the proof we take e = 1/2 and A = A~/2. 

(ii) The proof is analogous to that of part (i): instead of part (i) of Theorem 3.1 

we use part (ii) of the theorem and instead of lemma 2 in [11] we use the 

following lemma of Bourgain [5]: If (a,j) is a nonnegative m by m matrix that 

satisfies E;=~a o < M  for all 1 =<i--<_m then for every e > 0  there exists a 

decomposition of { i , 2 , . . . , m }  to k pairwise disjoint subsets A , A 2 , . .  ",Ak, 
such that k _-<9. (M/e )  2 and for every 1 -< l _-< k and i ~ A t ,  Ej~at-~,~ a ,  --< e. (In 

his proof Bourgain establishes the existence of two decompositions of {1,. �9 m} 

to r <= 3(M/e)  pairwise disjoint subsets A~ , . . . ,  A, and B1,-" ",/3, such that for 

every 1 < l < r, i EA~ and s EB, ,  E{a,, : j  E A , , j  < i} < e/2 and E{as, : j  EB~ 

and .1 > s} < e/2. The desired decomposition is {A, fq Bj : 1 ~ i,j < r}.) 

(iii) The proof follows immediately from the proof of (i). [] 

THEOREM 4.2. There exist absolute constants C1 and C2 such that for every 

l > e  > 0 ,  X contains a (l +e)-isomorphic copy of l~ for some k satisfying 
k >= f i n  c21"(l+e)/j"M.. In particular: 

(i) I f  M, <--_ C then k >- Cln c21""+~/l"c. 

(ii) There exists a constant C(e)  such that if In In iV/,-< <5 In In n for some 
0 < ~ < 1  then 

lnln k _-> (1 - 6) lnln n - C(e).  

PROOF. The standard argument of [10] asserts that if {x,},~ are unit vectors 
that satisfy 

II~a,x,l[<=max[o~,]'C 

for all a, E R  then there exist p = [X~[/[] blocks {y~}f=~ of {x,},~ that satisfy 

[ly, II = 1 and 

i~ aft, <-_ max [ a, [. 
x/D 

for all a, E R. Combining part (i) of Theorem 3.1 with repeated applications of 

this argument we conclude that there exist k unit vectors y~, . - . ,  yk E X, for 

some k satisfying k >= Cm c~"~ that satisfy 

fl -ll 
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for all t~, ~ R. This and the 

(If, e.g., a~ = maxla , ]  then 

triangle inequality imply 

II TM a,y, maxla ,  1. ( 1 -  e/3). 

+ lL ~ , x ` - . tE <= lq o l{ + , ~ , , . , + ,3 , 1  

The theorem follows since (1 + e/3)/(1 - el3) <_- 1 + e. [] 

COROLLARY 1. For every e > 0 and 0 <  6 < 1 there exists a constant C = 

C(e, 6 ) >  0 such that if X ,  is an n-dimensional normed space that contains a 

2-isomorphic copy of l~' where lnln m _-> 8 .  lnln n then X .  contains a (1 + e)- 

isomorphic and (1 + e )-complemented copy of l~ where In In k -> c �9 In In n. 

(This corollary without an estimate on k is proved in [17].) 

PROOF. By the lemma in [17, section 4.1] there exist absolute positive 

constants C~ and A and p functionals {f,},P=, C X*~ such that ]if, II = 1, l n lnp  _--- 

C, In In n and 

Ave e, : e , = - + l  -_<A(lnn) 2. 
i = l  

This and Theorem 4.2 imply the existence of a k-dimensional space E C sp{fi },P=~, 

where In In k => C In Inn and E is a (1 + e)-isomorphic (and hence a (1 + e)- 

complemented) copy of l~. This implies the assertion of the corollary. [] 

THEOREM 4.3. For every e > 0 there exists a constant C(e ) such that for every 

normed space X .  of dimension n either X .  contains a (1 + e )-isomorphic copy of l7 

for some m satisfying In In m => �89 In In n or X .  contains a (1 + e)-isomorphic copy 

of l~ for some k satisfying In In k => �89 In In n - C(e ). 

PROOF. We use the results appearing in proposition 5.1 and the procf of 

theorem 5.2 in [9]. Let S be the ellipsoid with the maximal volume contained in 

the unit ball of 2(. and let ] ] be the Euclidean norm generated by this ellipsoid 

as the unit ball. By the Dvoretzky-Rogers  Theorem there exists an orthonormai 

basis {e,}7=, such that for 1 =< i =< k = [9n/25], II e, II => ~. Put M, = (fs Ilx 112d~.(S)) ''2 
where p. is the normalized Haar measure on S. It is known ([9]) that for any 

e > 0 there exists a subspace E C X,,  such that E is (1 + e)-isomorphic to lg and 

dim E = p  >= B(e )nM~ for some positive constant (depending only on e) B(e) .  

Define 
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q f f n ) = B ( e ) n M ~ ;  M =  """  e 

If qt(n) _-> M then X, contains a (1 + e)-isomorphic copy of l~" for some m => M 

and the theorem's assertion holds. Otherwise qt(n) < M. It is well known (see, 

e.g., [8]) that n M  ~, = fllZ,"=l T,e, ][2d/x(T) where T, are independent normalized 
Gaussian variables. By [16] there exists an absolute constant C such that 

2 \ 1/2 // 2 1/2 (nM:)l'2=(f ~=T,e, dtx(T)) ~=kf  ,=~T,e, d/x(T)) 
1 ( })1,2 1 

> �9 Ave ,.., :e, = -+1 > 
= C l n k  = C l n k  

Therefore if ~ ( n ) -  < M then 

For 1 < i N k  

Ave{  ,=~le,e, :e, =_+1} .  

~ e , e ,  } A v e [  ,=1 " e , =  +--1 <=C.ln k(nMZ,) m 

--1/2 = C - I n  k(qt (n) /B(e))  = C~" In k" (M/B(e ) )  1/'-. 

< 1 for all 1 < i  < k  the last put x, = e,/11 e, II- Since ~ = II e, I1-<- = = 
inequality clearly implies 

= ,=1 +-l}<2C,'lnk'(M/B(e)) 1,2. 

Combining this and Theorem 4.2 we conclude that X, contains a (1 + e)- 

isomorphic copy of l~ for some k satisfying In Ink => �89 In Inn - C(e)  where C(e)  
is a constant depending only on e. [] 

REMARK. It is easy to see that the estimate given in Theorem 4.3 is, in a 

sense, best possible. Indeed, let 32, = l~. where q, = X/1--n n. By [3] if E C 32, is a 

k-dimensional subspace which is 2-isomorphic to l~ then k <= Ctl 2/q" for some 

absolute constant C and thus In tn k =< �89 In n + 1 for sufficiently large n. 

On the other hand, X, contains no 2-isomorphic copy of l~ if In In k -> �89 In In n. 

This follows from the results of [14] that states that if E C l~. is a k-dimensional 

subspace then 

d(E, 1~) <= k l/2-~/q. 

(d denotes here the Banach-Mazur distance). This and the triangle inequality 

imply 

d(E, l~) >= d(l~, l~)/d(E, l~) >= k l/q. > 2. 
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